Engineering Physics

Sanjay D Jain, Girish G Sahasrabudhe

ISBN: 9788173719912 | Year: 2016 | Paperback | Pages: 648 | Language : English

Book Size: 180 x 240 mm | Territorial Rights: World

Price: 1495.00

About the Book

Engineering Physics has been conceived to develop a coherent, comprehensive and practical view of physics among engineering students. This will help them to develop fundamental ways of thinking and inventing in their future engineering practice. The book attempts to break the monotony of just stating theoretical concepts by examining the historical development of the subject, to show interesting links between the various topics. Theory and experiment are integrated and learning through scientific method is emphasized by seeking agreement between theory and experiment. Numerical problems are included at appropriate places to offer quantitative appreciation of parameters involved. Charts are used to facilitate comparative learning of topics that share the same unifying and founding aspects. Applications of each topic are discussed at the end of the chapter to give an idea of how engineering grows through the utilitarian translation of discoveries and concepts in physics. A new chapter on nanophysics has been included, with additional exercises in key chapters.

Contributors (Author(s), Editor(s), Translator(s), Illustrator(s) etc.)

Sanjay D Jain is Head, Knowledge Center of Priyadarshini Institute of Engineering and Technology, Nagpur. He has been teaching engineering physics and researching in the area of nonlinear elastic and acoustic properties of solids for the last twenty-four years. He has published several research papers in leading international journals and has contributed papers to international conferences.
.
Girish G Sahasrabudhe is Professor of Physics, Shri Ramdeobaba Kamla Nehru Engineering College, Nagpur. He obtained his doctoral degree in physics from IIT Bombay, Mumbai, for his work on theory of permutation and unitary groups in many-body problems. He has been teaching physics for the last twenty-six years and has set up a MATHEMATICA lab in which educational material is developed.

Table of Content

1. Physics and Engineering 
1.1. The Story of Physics and Engineering 
1.2. Learning Physics 
1.3. Theory 
1.4. Experiment 
1.4.1. Least Count and Range 
1.4.2. Error Analysis 
1.4.3. Significant Figures 
1.4.4. Method of Least Squares 
1.5. Seeking Agreement between Theory and Experiment 
1.6. Applications 
2. What is Light? 
2.1. The Story of Light 
2.2. Geometrical and Physical Optics 
2.3. Wave Equation and Wave Parameters 
2.4. Light as an ElectromagneticWave 
2.5. Applications 
3. Interference 
3.1. The Story of Interference of LightWaves 
3.2. Superposition of Waves 
3.3. Coherence 
3.4. Interference 
3.4.1. Procedure for Studying Interference 
3.4.2. Interference in Different Cases 
3.5. Applications 
3.5.1. Measurement of Length 
3.5.2. Measurement of Refractive Index 
3.5.3. Nonreflecting/ High reflecting Films 
3.5.4. Test of Flatness of a Surface 
3.5.5. Interference Filters 
4. Diffraction 
4.1. The Story of Diffraction 
4.2. The Phenomenon of Diffraction 
4.3. Diffraction at Slits 
4.3.1. Single Slit 
4.3.2. Double Slit 
4.3.3. Multiple Slits 
4.4. Applications 
5. Polarisation 
5.1. The Story of Polarisation 
5.2. Types of Polarisation 
5.3. Why Natural Light is Unpolarised 
5.4. Production of Plane Polarised Light 
5.4.1. Selective Absorption 
5.4.2. Polarisation by Reflection 
5.4.3. Polarisation by Scattering 
5.4.4. Polarisation by Double Refraction 
5.5. Huygen’sModel of Double Refraction and Production of Elliptically and Circularly Polarised Light 
5.6. Analysis of Polarised Light 
5.7. Applications 
5.7.1. Applications of Polarising Devices 
5.7.2. Applications of Birefringence 
5.7.3. Applications of Optical Activity 
6. Quantum Physics 
6.1. The Story of Quantum Physics 
6.2. Planck’s Quantum Theory 
6.3. Photoelectric Effect 
6.4. Compton Effect 
6.5. Comparison of Photoelectric Effect and Compton Effect 
6.6. Wave–Particle Duality of Radiation and Concept of Matter Waves 
6.7. Heisenberg’s Uncertainty Principle 
6.8. Wave Function    
6.9. Schrodinger’s Equation 
6.10. Applications 
7. Atomic Physics 
7.1. The Story of Atomic Physics 
7.2. Atomic Spectra 
7.3. Bohr’s Theory 
7.4. Application of Quantum Mechanics to Hydrogen Atom 
7.4.1. Application of de Broglie’s Theory 
7.4.2. Application of Uncertainty Principle 
7.4.3. Schrodinger Equation for Hydrogen Atom 
7.5. Quantum Numbers and the Periodic Table 
7.6. Xray Spectra 
7.7. Applications 
8. Nuclear Physics 
8.1. The Story of Nuclear Physics 
8.2. Atomic Nucleus 
8.2.1. Nuclear Structure 
8.2.2. Nuclear Force 
8.2.3. Nuclear Binding Energy 
8.2.4. Nuclear Spin and Magnetic Moment 
8.3. Radioactivity 
8.3.1. Radioactive Decay Law 
8.3.2. Nuclear Reactions 
8.3.3. Detection of Nuclear Radiation 
8.4. Nuclear Models and Spectroscopy 
8.4.1. Liquid Drop Model 
8.4.2. Shell Model 
8.4.3. Spectroscopy 
8.4.4. Nuclear Magnetic Resonance 
8.5. Applications 
8.5.1. Applications of Fission and Fusion 
8.5.2. Applications of Radioactivity 
8.5.3. Applications in Medical Diagnostics 
8.5.4. Harmful Effects of Radiation 
9. Structure and Properties of Matter 
9.1. The Story of Matter 
9.2. Bonding 
9.3. Bonding in Solids 
9.3.1. Ionic Crystals 
9.3.2. Covalent Crystals 
9.3.3. Metallic Crystals 
9.3.4. Van der Waals Crystals 
9.3.5. Hydrogen Bonded Crystals 
9.4. Crystal Structure 
9.5. Miller Indices 
9.6. Determination of Crystal Structure by Xray Diffraction 
9.7. Materials and their Properties 
9.8. Applications 
10. Dielectric and Magnetic Materials 
10.1. The Story of Dielectric and Magnetic Materials 
10.2. Electromagnetism in Materials 
10.3. Microscopic Models of Polarisation and Magnetisation 
10.3.1. Electronic Polarisation and Diamagnetism 320
10.3.2. Ionic Polarisation 
10.3.3. Orientational Polarisation and Paramagnetism 
10.4. Internal Field 
10.5. Ferroelectricity, Ferromagnetism and Related Phenomena 
10.5.1. Hysteresis 
10.5.2. Curie-Weiss Law 
10.5.3. Spontaneous Polarisation/Magnetisation 
10.5.4. Ferromagnetic Domains 
10.5.5. Electrostriction, Piezoelectricity and Magnetostriction 
10.5.6. Antiferromagnetism and Ferrimagnetism 
10.6. Classification of Materials 
10.7. Applications 
10.7.1. Dielectric Materials 
10.7.2. Magnetic Materials 
11. Conductors, Semiconductors and Superconductors 
11.1. The Story of Conductors 
11.2. Free Electron Theory of Metals 
11.3. Formation of Energy Bands in Solids 
11.3.1. Origin of Forbidden Bands in Solids 
11.3.2. Effective Mass 
11.4. Fermi Energy and Fermi Level 
11.5. Semiconductors: Intrinsic and Extrinsic 
11.6. Superconductivity 
11.7. Applications 
12. Diodes and Transistors 
12.1. The Story of Diodes and Transistors 
12.2. p-n Junction Diode 
12.3. Transistor 
12.4. Applications 
13. Charged Particles in Electric and Magnetic Fields 
13.1. The Story of Charged Particles in Motion 
13.2. Motion Under a Force 
13.3. Motion of Charged Particles in Electric and Magnetic Fields 
13.4. Motion of Charged Particles in Combined Electric and Magnetic Fields 
13.5. Electron Optics 
13.5.1. Electrostatic Lens 
13.5.2. Magnetostatic Lens 
13.5.3. Comparison with Optical Lens 
13.6. Applications 
14. Lasers 
14.1. The Story of Lasers 
14.2. Introduction 
14.2.1. Population Inversion
14.2.2. Metastable State 
14.2.3. Pumping 
14.2.4. Basic Laser Action 
14.2.5. Resonator 
14.3. Different Types of Lasers 
14.4. Characteristics of Laser Light 
14.4.1. Coherence and Monochromaticity 
14.4.2. Directionality 
14.4.3. Intensity 
14.5. Semiconductor Photonic Devices 
14.5.1. LED 
14.5.2. Laser Diode 
14.6. Applications 
14.6.1. Applications in Measurement 
14.6.2. Applications in Information Processing 
14.6.3. Applications in Industry 
14.6.4. Applications in Medicine 
14.6.5. Applications in Defence 
15. Fibre Optics 
15.1. The Story of Fibre Optics 
15.2. Total Internal Reflection 
15.3. Structure of an Optical Fibre 
15.4. Propagation of Light 
15.5. Wave Optics: Modes 
15.6. Attenuation 
15.6.1. Loss Mechanisms 
15.7. Signal Distortion 
15.7.1. Mechanisms of Dispersion 
15.7.2. Measure of Dispersion 
15.8. Fibre Optic Communication Systems 
15.9. Applications 
15.9.1. Advantages of the Fibre Optic Systems 
15.9.2. Optical Fibre Sensors 
15.9.3. Medical Applications 
15.9.4. Applications in Communications and Information Technology 
16. Acoustics 
16.1. The Story of Acoustics 
16.2. Fundamentals of Vibrations 
16.3. SoundWaves and their Characteristics 
16.3.1. Wave Equation 
16.3.2. Velocity 
16.3.3. Displacement Amplitude and Pressure Amplitude 
16.3.4. Intensity 
16.3.5. Sound Level 
16.3.6. Loudness Level 
16.3.7. Pitch 
16.3.8. Quality/Timbre 
16.4. Mechanisms of Speech and Hearing 
16.5. Classical Ray Theory 
16.6. Ultrasonics 
16.7. Applications 
17. Introduction to Nanotechnology 
17.1. Introduction 
17.2. Preparation of Nanomaterials 
17.3. Characterisation and Measurement 
17.3.1. Scanning Probe Microscopy 
17.3.2. Electron Microscopy 
17.3.3. Characterisation Tools as Fabrication Tools 
17.4. Fullerenes, Graphene and Cargon Nanotubes 
17.5. Properties and Applications 
17.5.1. Confinement 
17.5.2. Electrical Properties 
17.5.3. Optical Properties 
17.5.4. Magnetic Properties 
17.5.5. Elastic Properties 
17.5.6. More Applications 
Index

`